
GPU Ray Marching
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Advanced Graphics

1

GPU Ray-tracing

Ray tracing 101: “Choose the color of
the pixel by firing a ray through and
seeing what it hits.”

Ray tracing 102:
“Let the pixel make up
its own mind.”

2

GPU Ray-tracing

1. Use a minimal fragment shader
(no transforms)

2. Set up OpenGL with minimal
geometry, a single quad

3. Bind a vec2 to each vertex
specifying ‘texture’ coordinates

4. Implement raytracing in GLSL
per pixel:
a. For each pixel, compute the ray

from the eye through the pixel,
using the interpolated texture
coordinate to identify the pixel

b. Run the ray tracing algorithm
for every ray

3

vec3 getRayDir(
 vec3 camDir,
 vec3 camUp,
 vec2 texCoord) {
 vec3 camSide = normalize(
 cross(camDir, camUp));
 vec2 p = 2.0 * texCoord - 1.0;
 p.x *= iResolution.x
 / iResolution.y;
 return normalize(
 p.x * camSide
 + p.y * camUp
 + iPlaneDist * camDir);
}

// Window dimensions
uniform vec2 iResolution;

// Camera position
uniform vec3 iRayOrigin;

// Camera facing direction
uniform vec3 iRayDir;

// Camera up direction
uniform vec3 iRayUp;

// Distance to viewing plane
uniform float iPlaneDist;

// ‘Texture’ coordinate of each
// vertex, interpolated across
// fragments (0,0) → (1,1)
in vec2 texCoord;

GPU Ray-tracing

44

Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
 float OdotD = dot(rayorig - pos, raydir);
 float OdotO = dot(rayorig - pos, rayorig - pos);
 float base = OdotD * OdotD - OdotO + radius * radius;

 if (base >= 0) {
 float root = sqrt(base);
 float t1 = -OdotD + root;
 float t2 = -OdotD - root;
 if (t1 >= 0 || t2 >= 0) {
 float t = (t1 < t2 && t1 >= 0) ? t1 : t2;
 vec3 pt = rayorig + raydir * t;
 vec3 normal = normalize(pt - pos);
 return Hit(pt, normal, t);
 }
 }
 return Hit(vec3(0), vec3(0), -1);
}

GPU Ray-tracing

5

An alternative to raytracing:
Ray-marching

An alternative to classic ray-tracing is
ray-marching, in which we take a
series of finite steps along the ray until
we strike an object or exceed the
number of permitted steps.

● Also sometimes called ray casting
● Scene objects only need to answer,

 “has this ray hit you? y/n”
● Great solution for data like height fields
● Unfortunately…

○ often involves many steps
○ too large a step size can lead to lost

intersections (step over the object)
○ an if() test in the heart of a for() loop

is very hard for the GPU to optimize

6

GPU Ray-marching:
Signed Distance Fields

Ray-marching can be dramatically
improved, to impressive realtime
GPU performance, using signed
distance fields:

1. Fire ray into scene
2. At each step, measure distance field

function: d(p) = [distance to nearest
object in scene]

3. Advance ray along ray heading by
distance d, because the nearest
intersection can be no closer than d

This is also sometimes called ‘sphere tracing’. Early paper:

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

7

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

float sphere(vec3 p, float r) {
 return length(p) - r;
}

float cube(vec3 p, vec3 dim) {
 vec3 d = abs(p) - dim;
 return min(max(d.x,
 max(d.y, d.z)), 0.0)
 + length(max(d, 0.0));
}

float cylinder(vec3 p, vec3 dim)
{
 return length(p.xz - dim.xy)
 - dim.z;
}

float torus(vec3 p, vec2 t) {
 vec2 q = vec2(
 length(p.xz) - t.x, p.y);
 return length(q) - t.y;
}

Signed distance functions

8

An SDF returns the minimum possible
distance from point p to the surface
it describes.

The sphere, for instance, is the distance
from p to the center of the sphere,
minus the radius.

Negative values indicate a sample
inside the surface, and still express
absolute distance to the surface.

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

Raymarching signed distance fields
vec3 raymarch(vec3 pos, vec3 raydir) {
 int step = 0;
 float d = getSdf(pos);

 while (abs(d) > 0.001 && step < 50) {
 pos = pos + raydir * d;
 d = getSdf(pos); // Return sphere(pos) or any other
 step++;
 }

 return
 (step < 50) ? illuminate(pos, rayorig) : background;
}

9

Visualizing step count

Final image Distance field

Brighter = more steps, up to 50

10

Combining SDFs
We combine SDF models by choosing
which is closer to the sampled point.

● Take the union of two SDFs by
taking the min() of their
functions.

● Take the intersection of two
SDFs by taking the max() of their
functions.

● The max() of function A and the
negative of function B will return
the difference of A - B.

By combining these binary operations
we can create functions which describe
very complex primitives.

11

Combining SDFs
min(A, B)

(union)

max(A, B)
(intersection)

max(-A, B)
(difference)

12

Taking the min(), max(), etc of two SDFs yields a
sharp discontinuity. Interpolating the two SDFs with
a smooth polynomial yields a smooth distance curve,
blending the models:

Blending SDFs

float blend(float a, float b, float k) {
 a = pow(a, k);
 b = pow(b, k);
 return pow((a * b) / (a + b), 1.0 / k);
}

Sample blending function (Quilez)

13

Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse transform to the
input point within your distance function.
Ex:

This renders a sphere centered at (0, 3, 0).
More prosaically, assemble your local-to-world transform as usual, but apply its
inverse to the pt within your distance function.

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

float f(vec3 pt) {
 return sphere(pt - vec3(0, 3, 0));
}

14

Transforming SDF geometry
float fScene(vec3 pt) {

 // Scale 2x along X
 mat4 S = mat4(
 vec4(2, 0, 0, 0),
 vec4(0, 1, 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Rotation in XY
 float t = sin(time) * PI / 4;
 mat4 R = mat4(
 vec4(cos(t), sin(t), 0, 0),
 vec4(-sin(t), cos(t), 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Translate to (3, 3, 3)
 mat4 T = mat4(
 vec4(1, 0, 0, 3),
 vec4(0, 1, 0, 3),
 vec4(0, 0, 1, 3),
 vec4(0, 0, 0, 1));

 pt = (vec4(pt, 1) * inverse(S * R * T)).xyz;

 return sdSphere(pt, 1);
}

15

Transforming SDF geometry

The previous example modified ‘all
of space’ with the same transform,
so its distance functions retain
their local linearity.

We can also apply non-uniform
spatial distortion, such as by
choosing how much we’ll modify
space as a function of where in
space we are.

float fScene(vec3 pt) {
 pt.y -= 1;
 float t = (pt.y + 2.5) * sin(time);
 return sdCube(vec3(
 pt.x * cos(t) - pt.z * sin(t),
 pt.y / 2,
 pt.x * sin(t) + pt.z * cos(t)), vec3(1));
}

16

Find the normal to an SDF

Finding the normal: local gradient

The distance function is locally linear and
changes most as the sample moves directly
away from the surface. At the surface, the
direction of greatest change is therefore
equivalent to the normal to the surface.

Thus the local gradient (the normal) can be
approximated from the distance function.

float d = getSdf(pt);
vec3 normal = normalize(vec3(
 getSdf(vec3(pt.x + 0.0001, pt.y, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y + 0.0001, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y, pt.z + 0.0001)) - d));

17

SDF shadows

Ray-marched shadows are
straightforward: march a ray
towards each light source, don’t
illuminate if the SDF ever drops
too close to zero.

Unlike ray-tracing, soft shadows are
almost free with SDFs: attenuate
illumination by a linear function of
the ray marching near to another
object.

18

float shadow(vec3 pt) {
 vec3 lightDir = normalize(lightPos - pt);
 float kd = 1;
 int step = 0;

 for (float t = 0.1;
 t < length(lightPos - pt)
 && step < renderDepth && kd > 0.001;) {
 float d = abs(getSDF(pt + t * lightDir));
 if (d < 0.001) {
 kd = 0;
 } else {
 kd = min(kd, 16 * d / t);
 }
 t += d;
 step++;
 }
 return kd;
}

Soft SDF shadows

By dividing d by t, we
attenuate the strength
of the shadow as its
source is further from
the illuminated point.

19

Repeating SDF geometry

If we take the modulus of a point’s
position along one or more axes
before computing its signed
distance, then we segment space
into infinite parallel regions of
repeated distance. Space near the
origin ‘repeats’.

With SDFs we get infinite repetition
of geometry for no extra cost.

float fScene(vec3 pt) {
 vec3 pos;
 pos = vec3(mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
 return sdCube(pos, vec3(1));
}

20

Repeating SDF geometry

● sdSphere(4, 4)
 = √(4*4+4*4) - 1
 = ~4.5

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

● sdSphere(
 ((4 + 2) % 4) - 2, 4)
 = √(0*0+4*4) - 1
 = 3

● sdSphere(
 ((4 + 2) % 4) - 2,
 ((4 + 2) % 4) - 2)
 = √(0*0+0*0) - 1
 = -1 // Inside surface

21

SDF - Live demo

22

Recommended reading

Seminal papers:

● John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals”,
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

● John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit
Surfaces”, http://graphics.cs.illinois.edu/papers/zeno

Special kudos to Inigo Quilez and his amazing blog:

● http://iquilezles.org/www/articles/smin/smin.htm
● http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

Other useful sources:

● Johann Korndorfer, “How to Create Content with Signed Distance Functions”,
https://www.youtube.com/watch?v=s8nFqwOho-s

● Daniel Wright, “Dynamic Occlusion with Signed Distance Fields”,
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf

● 9bit Science, “Raymarching Distance Fields”,
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

23

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf
http://graphics.cs.illinois.edu/papers/zeno
http://iquilezles.org/www/articles/smin/smin.htm
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.youtube.com/watch?v=s8nFqwOho-s
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

